
Delay-Aware Design, Analysis and Verification of

Intelligent Intersection Management
(Invited Paper)

Bowen Zheng∗, Chung-Wei Lin†, Hengyi Liang∗, Shinichi Shiraish†, Wenchao Li‡, Qi Zhu∗

∗University of California, Riverside, CA 92521, Email: {bzheng, hliang, qzhu}@ece.ucr.edu
†TOYOTA InfoTechnology Center, Mountain View, CA 94043, Email: {cwlin, sshiraishi}@us.toyota-itc.com

‡Boston University, Boston, MA 02215, Email: wenchao@bu.edu

Abstract—With the rapid advancement of autonomous driving
and vehicular communication technology, intelligent intersection
management has shown great promise in improving transporta-
tion efficiency. In a typical intelligent intersection, an intersection
manager communicates with autonomous vehicles wirelessly and
schedules their crossing of the intersection. Previous system
designs, however, do not address the possible communication
delays due to network congestion or security attacks, and could
lead to unsafe or deadlocked systems. In this work, we propose
a delay-tolerant protocol for intelligent intersection management,
and develop a modeling, simulation and verification framework
for analyzing the protocol’s safety, liveness and performance.
Experiments demonstrate the advantages of our proposed proto-
col over traditional traffic light control, and more importantly,
demonstrate the importance and effectiveness of using this frame-
work to address timing (delay) in vehicular network applications.
This work is the first step towards a comprehensive delay-
aware design and verification framework for practical vehicular
network applications.

I. INTRODUCTION

In transportation systems, intersections are critical as they

are associated with a significant percentage of traffic accidents

and play an important role in traffic efficiency. According to

the Fatality Analysis Reporting System (FARS) in the United

States, 40% of crashes and 21.5% of fatal traffic accidents are

related to intersections [1], [2]. While traditional traffic lights

have helped us manage intersections, they do not adapt well

to real-time traffic and face challenges in efficiency [1].

With the rapid advancement of autonomous driving and

vehicular communication technology, intelligent intersection

management techniques have shown great promise in im-

proving intersection safety and transportation efficiency. In an

intelligent intersection, autonomous vehicles with vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communica-

tion capabilities will exchange information of current driving

states with each other or with roadside controllers for coor-

dinated crossing of the intersection. In the United States, the

advancement of vehicular communication technology has led

to the development of Dedicated Short Range Communication

(DSRC) standard [3], [4], and sets the foundation for V2V and

V2I applications like intelligent intersection management.

In the literature, intelligent intersection management tech-

niques can be classified into two major categories: central-

ized management and distributed management. Centralized

intersection management utilizes V2I communications, where

every vehicle communicates with a central intersection man-

ager for permission to cross the intersection [5], [6], [7], [8],

[9], [10]. These works typically divide an intersection into

grids, and formulate the problem as assigning grids to different

vehicles at each time step. In [5], the proposed protocol is

extended to combine traffic lights and V2I communication for

both autonomous and regular vehicles. The work in [6] studies

fuel consumption and vehicle emission compared with tradi-

tional traffic lights. The work in [7] uses control theories to

prove system safety and liveness through hybrid architectures.

In [8], [9], the authors define a spacio-temperal protocol that

can handled both four-way intersections and roundabouts by

assigning grids to vehicles at each time step, and prove their

protocol is deadlock free when there is no communication

delay. In [10], the problem is abstracted as traffic flows with

conflict points and formulated as a linear programing problem.

Distributed intersection management requires the vehicles to

negotiate the right-of-way among themselves before entering

the intersection [11], [12], [13]. In [13], the system can be

proven to be deadlock-free using Petri Net models. In [11],

Timed Petri Nets models are again used to decide the sequence

of vehicles entering intersection for traffic smoothness. In all

these previous works, vehicular communications are assumed

as instantaneous (or with a short constant delay) and always

reliable.

However, the wireless nature of vehicular communications

makes it susceptible to significant communication delays [14]

and packet losses [15] in dense traffic scenarios or under

security attacks [16]. Previous works on intelligent intersection

management lack the consideration of communication mes-

sage delays and losses, and consequently cannot ensure the

proposed protocols to be safe, deadlock free and efficient in

practical conditions.

In this work, we propose a delay-tolerant centralized inter-

section management protocol, which takes into account the

possible communication delays and losses between vehicles

and the central intersection manager. We develop a modeling,

simulation and verification framework for analyzing the safety,

liveness and performance of the proposed protocol, as shown

in Fig. 1. To the best of our knowledge, both the delay-tolerant

protocol and the analysis framework are the first to quan-

titatively and formally address the intersection management

problem with delay consideration.

Fig. 1. The modeling, simulation and verification framework for the proposed
delay-tolerance intersection management protocol.

Overall, the main contributions of our work include:

∙ We develop a delay-tolerant protocol for intelligent inter-

section management. The protocol assures that as long

as the communication delays are bounded, every vehicle

will eventually cross the intersection and vehicles with

conflicting routes will never enter the intersection at the

same time.

∙ We model and implement our protocol in the SUMO

traffic simulation suite [17], with the extension of modeling

communication delays.

∙ We verify the safety and liveness properties of our protocol

by building more abstract timed automata models and

leveraging the UPPAAL environment1 [18].

The rest of the paper is organized as follows. Section II

introduces the system model for intersection management.

Section III presents the proposed delay-tolerant intersection

management protocol. Section IV presents the building of

more abstract timed automata models and the usage of UP-

PAAL for verifying the protocol safety and liveness. Section V

presents the simulation with SUMO extension together with

the verification and simulation results. Section VI concludes

the paper.

II. BASIC SYSTEM MODEL

The basic intersection management system model is illus-

trated in Fig. 2. In this system, a central Intersection Manager

communicates with every vehicle via V2I communication

1UPPAAL is an integrated tool environment for modeling, validation and
verification of real-time systems modeled as networks of timed automata.

channels to schedule the traffic crossing the intersection. A

basic version of the protocol is as follows (a more formal and

detailed description with delay consideration is presented in

Section III).

∙ Vehicle: 1) sends a Request message to the intersection

manager, 2) enters the intersection only after it receives a

Confirm message from the manager, otherwise stops before

the intersection, and 3) resends a Request message when

Confirm is not received within a pre-defined timeout bound.

∙ Intersection Manager: 1) receives Request messages from

vehicles, and 2) schedules vehicles to enter the intersection

based on a scheduling policy, e.g., first come, first served

(FCFS).

Fig. 2. The intelligent intersection management system.

As stated before, this work explicitly considers communi-

cation delays and losses between Intersection Manager and

vehicles, as shown in Fig. 2. The goal of this work is to

design a delay-tolerant protocol that can improve intersection

performance/efficiency (measured by average traveling time

for vehicles to cross the intersection) and satisfy the following

properties:

∙ Safety: vehicles with conflicting routes (i.e., routes that may

cross each other within the intersection) may never enter the

intersection at the same time.2

∙ Liveness: every vehicle that sends request will eventually

cross the intersection, as long as the communication delays

are bounded by a timeout bound.

To guarantee the two properties and provide high perfor-

mance, we assume that the Intersection Manager is capable

of detecting whether the vehicles have entered or left the

intersection, which can be provided through sensors such as

cameras, traffic loop detectors, etc. We assume all vehicles

are autonomous and can detect whether there is any vehicle

between its current location and the intersection.

2It should be noted that the vehicles are assumed to have autonomous
driving capabilities and may detect or even avoid incoming collisions in many
cases. Nevertheless, conflicting routes could still lead to unsafe situations
given the limitations of autonomous driving, and are likely to cause deadlocks
even without accidents.

(a) Message living period.

(b) When to safely schedule another vehicle.

(c) When to resend request.

Fig. 3. Issues of the basic protocol under communication delays.

III. DELAY-TOLERANT INTERSECTION

MANAGEMENT PROTOCOL

In this section, we will first discuss the potential issues

of the basic request-confirm protocol, and then introduce the

design of our delay-tolerant intersection management protocol.

A. Problems with Communication Delay

When taking into account of communication delays in

practical systems, the basic request-confirm protocol faces

many issues that may lead to system deadlocks or unsafe

situations. We use the following three example scenarios to

demonstrate the issues the basic protocol may encounter.

The first problematic situation is shown in Fig. 3 (a). In

this example, the intersection manager first sends Confirm1 to

vehicle V1 at time 1s, however the message is delayed by 4s.

The intersection manager has then confirmed another vehicle

V2 during the delay of Confirm1 message. In this case, it might

be dangerous for V1 to take corresponding actions.

Some may argue that the intersection manager should not

schedule another vehicle until it gets a response from the

previously confirmed vehicle. However, this may lead to the

second problematic situation shown in Fig. 3 (b). In this

example, the intersection manager sends Confirm1 to vehicle

V1, but V1 does not enter the intersection because of a long

delay or possible loss of Confirm1. In this case, the intersection

manager should not wait forever for V1 to respond, however

the question is how long the intersection manager should wait

before it can safely confirm another vehicle V2.

The third issue is shown in Fig. 3 (c) where a vehicle sends

Request to the intersection manager but gets no response from

the intersection manager. The question is when the vehicle

should resend the Request message to avoid possible deadlock.

B. Delay-tolerant Intersection Management Protocol

Timeouts: To address the issues caused by communication

delays, we introduce three types of timeouts in our protocol:

1) timeout for each message transmission, denoted as !!
"#$;

2) timeout for a vehicle to wait before resending the request,

denoted as ! %
"#$; and 3) timeout for the Intersection Manager

to wait for a vehicle to enter the intersection, denoted as !&
"#$.

More specifically, !!
"#$ represents the living period of that

message, i.e., the message becomes invalid and should not

be used after the timeout. ! %
"#$ represents how long a vehicle

should wait, when no Confirm is received, before resending the

request. !&
"#$ represents how long the Intersection Manager

should wait for the currently scheduled vehicle to enter the

intersection, before it schedules another vehicle.

Messages: Three types of messages are defined in our protocol

for communication between the vehicle and the Intersection

Manager, as shown below.

∙ Request. A request message is sent by a vehicle to acquire

permission for entering the intersection. It contains re-

questID, sender, sending time, timeout (!!
"#$), and estimated

arriving time ("'()). In particular, the estimated arriving

time is used by the Intersection Manager to schedule

the time for each vehicle to enter the intersection. As

we assume the vehicles are autonomous, the estimated

arriving time can be calculated using the location, speed

and acceleration information collected from their sensors.

∙ Confirm. A confirm message is sent by the Intersection

Manager to give permission to a vehicle for entering the

intersection. It contains confirmID, sending time, timeout

(!!
"#$), and arriving time range ([!*, !+]). If the vehicle

enters the intersection during the arriving time range, it is

guaranteed to be safe according to our protocol. A vehicle

cannot enter the intersection if no Confirm is received. If

the vehicle cannot enter the intersection within the time

range, it must not enter the intersection, either; instead, the

vehicle can send a cancel message as discussed below.

∙ Cancel. A cancel message is sent by a vehicle to notify the

Intersection Manager that a previous Confirm is “cancelled”

by the vehicle and it will not enter the intersection. The

Cancel message is used for improving the performance and

is in fact optional. Once receiving the Cancel message, the

Intersection Manager can schedule other vehicles immedi-

ately and does not need to wait for the vehicle to cross

the intersection. Without receiving the Cancel message,

the Intersection Manager will wait for the timeout !&
"#$

before scheduling another vehicle (note that the Intersection

Manager knows whether the vehicle enters the intersection

through sensors). The fields in a Cancel message include

cancelID, corresponding confirmID, sending time, and time-

out !!
"#$.

Based on the above definitions, our protocol is described by

state machines in below.

State Machine for Vehicles: The state machine for a vehicle

is shown in Fig. 4. In the state machine, there are two variables

for denoting time. Variable "1 denotes the local time for each

state and variable "%&' denotes the expected arriving time in

global time. There are five states for the vehicle: approaching

not confirmed, decelerating not confirmed, approaching con-

firmed, entering intersection and left intersection. The details

of each state and the transitions are described below.

Fig. 4. Vehicle state machine.

Approaching not Confirmed: This is the starting state for

every vehicle approaching an intersection. In this state, once

the vehicle becomes the front vehicle (i.e., there is no other

vehicle between it and the intersection), it sends a Request

message and waits for the corresponding Confirm message

from the intersection manager. Inside the request message, the

field "%&' includes estimated arriving time to the intersection

based on current vehicle location, speed and acceleration. The

vehicle will resend the Request if no Confirm is received

within the timeout bound ! (
"#$. As the vehicle is approaching

the intersection, if no Confirm is receive, it may need to

decelerate and stop before the intersection waiting line. In

our case, if the distance to the intersection # (or to the

last vehicle waiting at the intersection) is less than a safe

value $, the vehicle will enter the state Decelerating not

Confirmed. If a Confirm is received within the timeout bound

and before decelerating, the vehicle will directly enter the state

of Approaching Confirmed.

Decelerating not Confirmed: In this state, the vehicle de-

celerates and ensures that it can fully stop before the waiting

line of the intersection. The vehicle will send a Request if

it becomes the front vehicle, and if no Confirm is received

within the timeout bound ! (
"#$, it will resend the Request.

The field "%&' in the request message will be based on the

new location, speed and deceleration information. If Confirm

is received within ! (
"#$ at this state, the vehicle will enter the

Approaching Confirmed state.

Approaching Confirmed: In this state, the vehicle has re-

ceived Confirm from the Intersection Manager with a time

range [!), !*] assigned for it to enter the intersection. The

vehicle will continuously check whether it can arrive at the

intersection within the assigned time range. If the vehicle finds

it cannot enter the intersection in time, it will send a Cancel

message to notify the Intersection Manager and switch back

to the one of the states waiting for the Confirm message: If the

distance to the intersection is still larger than the safe value

(# ≥ $), the vehicle will switch back to the Approaching not

Confirmed state; otherwise to the Decelerating not Confirmed

state. If the vehicle can arrive at the intersection within time

range [!), !*], it will enter the intersection and switch to

the state Entering Intersection. It should be noted that our

protocol will still function safely (but less efficient) if there is

no Cancel message (or it is lost or delayed too long), since

the Intersection Manager can sense whether the vehicle has

entered the intersection and will schedule another vehicle after

timeout !+
"#$.

Entering Intersection: In this state, the vehicle enters the

intersection with a preset speed. Once the vehicle has left the

intersection, it will enter the Left Intersection state. As we

assume the Intersection Manager can sense whether the vehicle

has entered or left the intersection, no action is needed for a

vehicle in this state.

Left Intersection: In this state, the vehicle has left the

intersection. No action is needed as explained above.

State Machine for Intersection Manager:

The state machine for the Intersection Manager is shown

in Fig. 5. There are three states: Idle, confirm sent vehicle

not cross and confirm sent vehicle cross. Before discussing

the details of each state, we first introduce the routine that

handles the messages received from the vehicles, i.e., the

Request and Cancel messages. All the messages received will

be put into a buffer, and the messages exceeding timeout

will be deleted. The message handling routine is activated

during all states. The Idle state is the one that the Intersection

Manager schedules vehicles. In our current implementation,

we adopt the First Come First Served (FCFS) scheduling

policy, and this can be easily changed to other policies. In

FCFS, the Intersection Manager will first schedule the request

from the vehicle that 1) has no other vehicle between it and the

intersection (this is in fact guaranteed as only the front vehicle

can send request in current model), and 2) has an estimated

arriving time "%&' that is the smallest among all front vehicles.

Idle: In this state, the intersection manager checks whether

the buffer storing messages from vehicles is empty. If it is not

empty, it will select a Request (hence a vehicle) based on the

scheduling policy. If the route of the selected vehicle conflicts

with the routes of the vehicles currently inside the intersection,

the Intersection Manager will wait for the current vehicles

inside the intersection to finish crossing before it sends the

Confirm message to the selected vehicle; otherwise it sends

the Confirm message immediately. The Intersection Manager

will also assign the time range for the selected vehicle to enter.

Fig. 5. Intersection Manager state machine.

In our current implementation, the Intersection Manager will

first compare current time with the expected arriving time !!"#
from the Request. If "#$$%&!' ()% >= !!"#, the upper bound

for the time range '$ is set to '$ = "#$$%&!' ()% + '%
&'(;

otherwise it is set to '$ = !!"# + '%
&'(. The lower bound

is set as "#$$%&!' ()%. After sending the Confirm message,

the Intersection Manager will enter the state of Confirm Sent

Vehicle not Cross.

Confirm Sent Vehicle not Cross: As stated before, we as-

sume the Intersection Manager can sense whether the selected

vehicle has entered the intersection. In this state, if a Cancel

message is received, the Intersection Manager will enter the

Idle state immediately. If the Intersection Manager senses the

vehicle has entered the intersection within assigned time range,

it will enter the Confirm Sent Vehicle Cross state; otherwise,

it will enter the Idle state and schedule another vehicle.

Confirm Sent Vehicle Cross: In this state, the Intersection

Manager sensed the current vehicle had entered the intersec-

tion and should switch to the Idle state immediately.

Issues Revisit: Given the protocol above, we revisit the three

examples discussed at the beginning of this section. For the

first problem, every message has a living period '%
&'(, so an

outdated message will never be used. For the second issue,

once a confirmation is sent to the vehicle, the intersection

is currently reserved for it3. The intersection manager will

not schedule another vehicle until ')
&'((')

&'(should be set

larger than '$ as '$ is the last valid time for the vehicle

to enter, and this is also shown in the verification results

in Section V). It is therefore safe to enter the intersection

as long as the vehicle arrives within the scheduled period

['*, '$]. The third problem can be solved with the resending

period ' +
&'(. Intuitively, ' +

&'(should be larger than 2 ∗ '%
&'(,

as this is the living period for the round trip communication

3It is possible that after a vehicle is confirmed, the intersection manager
receives another request with earlier estimated arrival time (such request
probably got delayed by bad communication condition). To mitigate (but not
fully prevent) such scenario, the intersection manager can put constraints such
as only confirming a vehicles request if its arrival time is within a bound of
current time (which was in fact implemented in our simulator)

between the vehicle and the manager, and both messages will

be invalid after this time period. This is also shown in the

verification results in Section V. In the following section, we

will use formal methods to verify the the safety and liveness

properties, and study the relationship between the timeouts to

avoid deadlock.

IV. TIMED AUTOMATA FOR UPPAAL VERIFICATION

In order to verify the safety and liveness properties dis-

cussed in Section II, we abstract timed automata models from

the state machines described in Section III, and leverage the

UPPAAL tool for verification. The key idea is to convert all

the variables in the state machines (e.g., distances) to variables

directly related to time. We are able to verify a restrictive case

where the four-way intersection has a single lane from each

direction. We assume the vehicles from the same direction

will autonomously use car-following models, and thus will

not collide.

Instead of modeling each single vehicle, we use one au-

tomata to model the vehicles from the same direction, as

shown in Fig. 6 (a). There are four automata in total corre-

sponding to the four directions. Each direction has a different

“id” from [0, 1, 2, 3]. The time variable in the automata is

t local v. Since only the front vehicle can send request to

the Intersection Manager in our protocol, we only need to

deal with one vehicle from each direction at the same time.

Each time the automata goes back to the initial state, it can be

considered as a new vehicle coming from the same direction.

Each front vehicle from a direction will first enter the initial

state and then randomly choose a time within range [0, !0] to

enter the Approaching not Confirmed state. This models the

uncertainty of the time that vehicles coming to the intersection.

Note that we combine the state Approaching not Confirmed

and the state Decelerating not Confirmed in the vehicle state

machine to one state named Approaching not Confirmed in the

automata. This is because the only difference of the two states

is how soon the vehicle will arrive at the intersection. Such

difference can be abstracted through a time variable t app,

which represents the time to arrive at the intersection after

receiving the Confirm message.

In the Approaching not Confirmed state, the vehicle will

periodically send request if Confirm is not received. Once Con-

firm is received, the state becomes Approaching Confirmed.

In this confirmed state, if the time is less than the time to

approach the intersection t app, the state becomes Entering

Intersection; otherwise it will go back to Approaching not

Confirmed. Once the vehicle enters the intersection, the vehicle

behind it becomes the front vehicle. The automata state will

go back to Initial, indicating a new vehicle arriving.

In order to model the message delays, we introduce two

automata as In-Channel and Out-Channel, as shown in Fig. 6

(c) and (d). For all directions, there is an In-Channel for

messages to be transmitted from the front vehicle to the

Intersection Manager, and an Out-Channel for messages to

be transmitted in the other direction. We remove the Cancel

message in the verification, which is equivalent to the case

Fig. 6. The timed automata modeled in UPPAAL.

where all the Cancel messages are lost. The In-Channel

automata is associated with the corresponding “id”s of cor-

responding directions. The automata can sense the trigger of

the synchronizer “request[id]” and move to the GetRequest

state, which represents the sending of the message from the

vehicle. The automata will then wait for the trigger of another

synchronizer “request2[id]”, which represents the receiving of

the message at the Intersection Manager. Such transition is

bounded by a timeout. The Out-Channel is similarly modeled.

Finally, the automata representing the Intersection Manager

is shown in Fig. 6 (b). We first implement a queue to store

the request from the vehicles, with functions as enqueue() and

dequeue(). The queue is first-in-first-out, and the new request

will overwrite the old request from the same direction. The

enqueue() routine runs on all states. Once the queue becomes

non-empty, the Intersection Manager will select a request from

the buffer with an “id” number. The following scheduling is

similar to the state machine case.

V. EXPERIMENT RESULTS

A. Verification Results

Using the timed automata models from Section IV, we have

successfully proved the following properties in UPPAAL:

∙ A[] not deadlock imply !"#$% <= '!

"#$
. The message

delay must be smaller than the message timeout '!

"#$

to ensure that the system does not deadlock4. We have

observed counter examples where delays longer than '!

"#$

caused deadlocks (similarly for the next two properties).

4In UPPAAL, A[] p indicates p is true for all reachable states.

∙ A[] not deadlock imply ' %

"#$
>= 2 ∗ '!

"#$
. The timeout

for resending the request must be at least two times larger

than the timeout of the message to ensure the system does

not deadlock.

∙ '&

"#$
>= '' and Vehicle(i).requestSent → Vehi-

cle(i).EnteringIntersection. When the first two properties

are guaranteed by setting the proper timeout bounds, and the

time the Intersection Manager should wait for the currently

scheduled vehicle to enter the intersection '&

"#$
is greater

than the upper bound of the time range assigned to the

corresponding vehicle '' , this liveness property is proved.

That is, once the vehicle sends a request, it will eventually

cross the intersection.

∙ A[] IntersectionV(0).InIntersection + Intersec-

tionV(1).Intersection + IntersectionV(2).InIntersection

+ IntersectionV(3).InIntersection <= 1. When the first

three properties are guaranteed, this safety property is

proved. That is, no vehicles from different directions can

enter the intersection at the same time (note that this is a

stronger condition than the safety properties discussed in

Section II).

B. Simulation Results

Simulator Implementation: We implement our simula-

tion environment based on the widely-used traffic simulator

SUMO [17]. Specifically, we implement the state machines for

the vehicles and the Intersection Manager, following the state

machines defined in Section III. We control the movement

of the vehicles by leveraging the TraCI API provided by

the SUMO simulation suite. Most importantly, we added the

explicit modeling of communication delays in SUMO. During

(a) SUMO simulation suite

(b) Unity visualization tool

Fig. 7. The screenshots of simulation tools in our framework.

simulation, at each time step, we halt the SUMO engine

and obtain the location, speed and acceleration information

of vehicles for facilitating our protocol simulation. In this

experiment we model a four-way single-lane intersection and

vehicles are arriving based on Poisson distributions. The

screenshot for simulation in SUMO and our visualization tool

Unity is shown in Fig. 7.

Delay-Tolerant Protocol vs. Traffic Lights: We first compare

the performance of our protocol with traditional traffic lights.

The performance is evaluated as the average traveling time

of each vehicle, i.e., the time difference of entering the

intersection range and leaving the intersection range. The

range is a radius of 50 meters from the intersection center.

The arriving rate of the Poisson distribution is within a range

of [0.1, 0.5] (the unit is vehicles/second). We also introduce

a factor # to denote the ratio of traffic arriving rates from

different directions. # = 1 represents that the north-south

directions has the same traffic arriving rate as the east-west

directions. # = 2 and # = 3 represent that the north-south

direction has twice and three times of traffic arriving rate than

the east-west direction, respectively. The traditional traffic light

is set with a red light phase of 36 seconds, a green light phase

of 31 seconds, and a yellow light phase of 5 seconds, which

are the default values in SUMO. The timeout values in our

protocol are set as $!

"#$
= 4, $ %

"#$
= 8 and $&

"#$
≥ $' (all

units in seconds).

The simulation results are shown in Fig. 8, where the x-axis

denotes the total traffic arriving rate from all directions, and

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Arriving Rate λ (Veh/s)

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 T

ra
v
e
l
T

im
e
 (

s
)

K =1

Traffic Light

Intersection Manager

(a) ! = 1, north-south directions have the same traffic arriving rate as
the east-west directions.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Arriving Rate λ (Veh/s)

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 T

ra
v
e
l
T

im
e
 (

s
)

K =2

Traffic Light

Intersection Manager

(b) ! = 2, north-south directions have twice traffic arriving rate as the
east-west directions.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Arriving Rate λ (Veh/s)

5

10

15

20

25

30

35

40

45

50

A
v
e
ra

g
e
 T

ra
v
e
l
T

im
e
 (

s
)

K =3

Traffic Light

Intersection Manager

(c) ! = 3, north-south directions have three times traffic arriving rate
as the east-west directions.

Fig. 8. The performance comparison between the proposed protocol and
traditional traffic lights.

y-axis denotes the ratio of the average traveling time between

our protocol and the traffic lights (i.e., setting the traffic lights

performance as baseline). Each data point is the average of 6

randomly generated traffic patterns following Poisson distri-

bution. We can find out that our proposed protocol provides

significantly better performance than the traditional traffic

lights when the traffic is not too heavy or when the traffic

arriving rates from different directions are asymmetric. When

the traffic is heavy and symmetric from different directions,

the traditional traffic lights achieve their best performance

and can be better than our solution (although our solution

can be further improved with more finer-granularity control

as planned in the future work).

Communication Delay (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
e

ra
g

e
 T

ra
v
e

l
T

im
e

 (
s
)

0

20

40

60

80

100

120

140

lambda:0.1
lambda:0.15
lambda:0.2
lambda:0.25
lambda:0.3
lambda:0.35
lambda:0.4
lambda:0.45
lambda:0.5

Fig. 9. Performance of our protocol under different communication delays.

Impact of Communication Delays on Performance: We fur-

ther evaluate the performance (average traveling time of each

vehicle) under different communication delays, as shown in

Fig. 9. We can see that the performance significantly decreases

(longer traveling time) with the increase of communication

delays, in particular when the traffic is heavy. This again

demonstrates the importance of modeling and analyzing the

impact of delays in intersection management, not only for the

safety and liveness properties, but also for the system perfor-

mance. It should be noted that in normal traffic conditions,

the communication delays are typically under one second (in

the range of dozens of milliseconds and can reach hundreds of

milliseconds when considering end-to-end delays [14]). Under

security attacks such as jamming, the delays can be much

longer. Note that if we remove the delay consideration in the

protocol, deadlocks are observed during simulation.

VI. CONCLUSION

This paper addresses the intelligent intersection manage-

ment problem with quantitative analysis of communication

delays. It presents a delay-tolerant intersection management

protocol, and a framework for modeling, simulating and ver-

ifying the safety, liveness and performance of the proposed

protocol. Experiments demonstrate the effectiveness of both

the proposed protocol and the framework. Future work in-

cludes the consideration of more complex intersection models

where the intersection can be divided into grids and scheduled

in finer granularity. It will also include the extension of the

framework to address other vehicular network applications.

ACKNOWLEDGEMENT

This work is supported in part by the Office of Naval

Research grants N00014-14-1-0815 and N00014-14-1-0816,

and the National Science Foundation grants CCF-1553757,

CNS-1646641 and CCF-1646381.

REFERENCES

[1] L. Chen and C. Englund, “Cooperative intersection management: A
survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 17,
no. 2, pp. 570–586, 2016.

[2] “Fatality analysis reporting system (FARS),” http://www.nhtsa.gov/Data/
Fatality-Analysis-Reporting-System-(FARS), Washington DC, USA, na-
tional Highway Traffic Safety Administration, NHTSA.

[3] J. B. Kenney, “Dedicated short-range communications (DSRC) standards
in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–
1182, 2011.

[4] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade,
M. Lukuc, J. Simons, and J. Wang, “Vehicle-to-vehicle communications:
Readiness of V2V technology for application,” Tech. Rep., 2014, national
Highway Traffic Safety Administration, DOT HS 812 014.

[5] K. Dresner and P. Stone, “A multiagent approach to autonomous inter-
section management,” Journal of artificial intelligence research, vol. 31,
pp. 591–656, 2008.

[6] Q. Jin, G. Wu, K. Boriboonsomsin, and M. Barth, “Advanced intersec-
tion management for connected vehicles using a multi-agent systems
approach,” in Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE,
2012, pp. 932–937.

[7] H. Kowshik, D. Caveney, and P. Kumar, “Provable systemwide safety
in intelligent intersections,” IEEE transactions on vehicular technology,
vol. 60, no. 3, pp. 804–818, 2011.

[8] R. Azimi, G. Bhatia, R. R. Rajkumar, and P. Mudalige, “Stip: Spatio-
temporal intersection protocols for autonomous vehicles,” in ICCPS’14:

ACM/IEEE 5th International Conference on Cyber-Physical Systems (with

CPS Week 2014). IEEE Computer Society, 2014, pp. 1–12.
[9] S. R. Azimi, G. Bhatia, R. R. Rajkumar, and P. Mudalige, “Reliable

intersection protocols using vehicular networks,” in Proceedings of the

ACM/IEEE 4th International Conference on Cyber-Physical Systems.
ACM, 2013, pp. 1–10.

[10] F. Zhu and S. V. Ukkusuri, “A linear programming formulation for
autonomous intersection control within a dynamic traffic assignment
and connected vehicle environment,” Transportation Research Part C:

Emerging Technologies, vol. 55, pp. 363–378, 2015.
[11] M. Ahmane, A. Abbas-Turki, F. Perronnet, J. Wu, A. El Moudni,

J. Buisson, and R. Zeo, “Modeling and controlling an isolated urban
intersection based on cooperative vehicles,” Transportation Research Part

C: Emerging Technologies, vol. 28, pp. 44–62, 2013.
[12] R. Azimi, G. Bhatia, R. Rajkumar, and P. Mudalige, “Intersection

management using vehicular networks,” SAE Technical Paper, Tech. Rep.,
2012.

[13] R. Naumann, R. Rasche, J. Tacken, and C. Tahedi, “Validation and
simulation of a decentralized intersection collision avoidance algorithm,”
in Intelligent Transportation System, 1997. ITSC’97., IEEE Conference

on. IEEE, 1997, pp. 818–823.
[14] Y. Yao, L. Rao, X. Liu, and X. Zhou, “Delay analysis and study of IEEE

802.11 p based DSRC safety communication in a highway environment,”
in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 1591–1599.

[15] Y. P. Fallah and M. K. Khandani, “Analysis of the coupling of
communication network and safety application in cooperative collision
warning systems,” in Proceedings of the ACM/IEEE Sixth International

Conference on Cyber-Physical Systems, ser. ICCPS ’15. New York, NY,
USA: ACM, 2015, pp. 228–237. [Online]. Available: http://doi.acm.org/
10.1145/2735960.2735975

[16] B. Zheng, C.-W. Lin, H. Yu, H. Liang, and Q. Zhu, “Convince: A cross-
layer modeling, exploration and validation framework for next-generation
connected vehicles,” in Proceedings of the 35th International Conference

on Computer-Aided Design, ser. ICCAD ’16. New York, NY, USA:
ACM, 2016, pp. 37:1–37:8. [Online]. Available: http://doi.acm.org/10.
1145/2966986.2980078

[17] “SUMO,” http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/
16931 read-41000/.

[18] “UPPAAL,” https://www.uppaal.org/.

